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ABSTRACT

This paper compares approaches proposed in the literature for the

Capacitated Plant Location Problem. The comparison is based on new

theoretical and computational results. The main emphasis of the paper is on

relaxations. In particular we identify dominance relations among the various

relaxations found in the literature. We also perform a probabilistic study of

these relaxations using a Euclidean model. In the computational study, we

compare the relaxations as a function of various characteristics of the test

problems. Several of these relaxations can be used to generate heuristic

feasible solutions that are better than tl classical greedy or interchange-

type heuristics, both in computing time and in the quality of the solutions r wj

found. 01 ao
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I

1. Introduction

For many organizations the location of plants, such as warehouses or

I
factories, affects the cost of supplying commodities to clients through the

transportation costs on the one hand and the fixed costs of opening and

operating the plants on the other hand. These costs vary with the location

and size of the plants. In this paper we study a classical model in location

theory.

The Capacitated Plant Location Problem (CPLP) can be formulated as the

mixed integer linear program

Z Min .. c .x + I f y.

(D) . x. . 1 for all i

(C) .d.x.. s y for all j
1 1 . .3 .

(N) 0 xij 1, 0 :5 y 1 for all i andj

(I) yj integer for all j,

where d- is the demand of client i, f and s- are the operating cost and
j .3

capacity of facility j, if it is open, and c ij/d i is the unit transportation

cost between i and j. The decisions to be made are represented by the

variables yj and xij , namely yj = I if facility j is open and 0 otherwise, and

x is the fraction of the demand of client i met from facility j. The

constraints (D) are the demand constraints, (C) the capacity constraints, (N)

A
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the nonnegativity and simple upper bound constraints and (I) the integrality

constraints.

The applications of this model are not limited to plant location. For

example, the same mathematical model is appropriate for making optimal lot

sizing decisions in production planning. If di is the demand in period i, f

and si are the set up cost and production capacity in period j, then CPLP is a

valid model where the decision variables are interpreted as follows: xij is

the fraction of the demand di produced in period j and yj = 1 if production

occurs in period j, 0 otherwise. Finally, in this model, cij/d i is the unit

production cost in period j plus the inventory holding cost until period i, if

i > j (or the backlogging cost if i < j). The model CPLP has also been

proposed in the context of telecommunication network design (Kochman and

McCallum [22] and Mirzaian [24]), machine replacement and vehicle routing (see

Sridharan [28]).

The formulation of the CPLP can be enriched by simple valid

inequalities. For example, the variable upper bound constraints

(B) x.. S yj for all i,j

and the total demand constraint

(T) Z sy 2 ! Z d "

To see that (B) is valid for CPLP, note that xi s 1 by constraint (N). Using

(C) and (I) it follows that xij !s yj. To see that (T) is valid. sum up the

constraints (C) and use (D).

1%----
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One obtains various lower bounds on Z by relaxing subsets of the

constraints (D), (C), (I), (B) and (T) either completely or in a Lagrangian

fashion. We use the following notation. If a set of constraints, say (A), is

relaxed completely the resulting bound is denoted by ZA. If constraints other

than (I) are relaxed in a Lagrangian fashicn, the corresponding Lagrangian

dual bound is denoted by ZA. For example
A*p

Ma M Z. c. .x.. + E. fjy. - 1. .Z. x. -1)

Z D =Max Min Zi  J ij J J i i ij
u x,y

. d.x. . !s y for all j

0 ! xi. y. for all i,j
rJ

y Z.d.

y. C 0, I} for all j.

These lower bounds provide the basis for numerous algorithms. For example,

the following relaxations have been used in branch and bound algorithms.

ZBI (This relaxation is the so-called weak linear programming relaxation

of CPLP. It was used by Sa [27] and improved by Akinc and Khumawala

[2] using ad hoc rules).

ZI  (This is the strong linear programming relaxation of the problem. It

was used by Davis and Ray [7], Guignard and Spielberg [18], and Baker

[3])

ZTD (Geoffrion and Mc Bride [141)

ZD (Nauss[251)

71i



Z'D (Christofides and Beasley [6]. In this relaxation, the total demand

constraint (T) is replaced by z y > K where K is the smallest
j J-

integer such that the sum of the K largest s.'s is at least Em.d.i).

ZC  (Van Roy [301 Guignard and Kim [16]).

Recently, a new type of relaxation has been introduced by several

authors. The method, known as variable splitting, can be defined in general

for (mixed) integer programs. It is obtained by rewriting the program

Z min c u

(S) A1 u b

(S2 ) A2 u 2

u X

as

Z min c u

A, u -< b,

u E X

A1 u S b
A2 2

U C X

U U

and by performing a Lagrangian relaxation of the equalities u u. The

Lagrangian dual bound obtained in this way has the value

Z (S 1, S2 ) min c u

us (A u !< bl uX} n (A u < b2 uX}

1 1' 2 u 2'
%

% F/

% .

S



whereas the classical Lagrangian bound obtained by dualizing (SI) is

Z =min cu

ue (A u : b I n (A u b2, uEX}1 .. 1 } 2 2

(see Guignard and Kim [171 and Geoffrion [13] respectively). As a

consequence, ZS 1 Z(SS 2),  i.e. the bound obtained by variable splitting

is always as tight as the corresponding Lagrangian bound.

In a recent paper, Barcelo, Fernandez and Jbnsten [4] propose the

following split for CPLP. (SI ) corresponds to the demand constraints (D), X

to the nonnegativity and 0, 1 requirements (N) and (I), and (S2 ) to the other

constraints, namely (C), (B) and (T). We show in Section 2 that the proposed

relaxation yields the bound ZD. Other splits yield other relaxations.

Our motivation for this study is twofold, theoretical and computa-

tional. On the theoretical side, we rank relaxations according to the

tightness of the bounds that they yield. This analysis is performed in

section 2. Several inequalities given in that section are classical, but we

have had a few surprises. For example, consider ZC, ZTC and ZTC. It is easy
TTC

to show that ZC  ZTC > ZT and both Van Roy [30] and Guignard and Kim [16]C TC
have noticed that the bound Z is often strictly stronger that ZT inC CT

practice. However Z is also harder to compute than Z and, in bothC C
references, the Lagrangian relaxation of (T) is introduced. Indeed, it seems
that computing ZTC is a good compromise between bound qualit"y ai ease of

solution. Our Theorem of Section 2 shows that, in fact, ZTC - . So ZTC

N<.
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cannot be used as a shortcut in approaching the quality of the bound ZC• On

the other hand, the solution of ZTC by subgradient optimization may still have

merits as it is possible that it converges faster to the common bound ZTC - C

than a subgradient approach applied directly to Z.

Another interesting result from Section 2 is that variable splitting does

not yield stronger bounds than ZC.

Section 3 analyzes the complexity of solving the different Lagrangian

relaxations. We also consider the complexity of the problem CPLP itself under

twodifferent assumptions on the capacities of the facilities.

Section 4 contains our computational experience with various

relaxations. Nearly all the researchers in the field have tested their

algorithms on the same set of data, the famous Kuehn and Hamburger test

problems as adapted by Khumawala [21]. These test problems have been a great

help in comparing the various solution methods. At the same time, it should

be noted that this test set is relatively small and has a very special

property : all the facilities have the same capacity and operating cost.

Therefore it seems appropriate to conduct a computational study on a different

and larger set of test problems. These problems have varying capacities and

operating costs but, for each facility, the operating cost is correlated to

the capacity according to an increasing concave function (economies of

scale). The duality gap yielded by various relaxations appears to be

sensitive to characteristics of the data such as total capacity versus total

demand. To demonstrate such relationships we perform our computational

experiments as a function of p E.s./E.d.. Keeping everything else equal,
JJ I.

we scale the sj's in order to get different values of o. For example we find

that adding the total demand constraint (T) improves the rplaxations

significantly when p is small.
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Our computational experience also covers some existing heuristics. Here

as well we have had surprises. A number of heuristics which perform well on

Kuehn and Hamburger problems have a poor performance on our test problems. We

recommend the use of relaxation-based heuristics rather than the usual greedy

or interchange-type heuristics. Consider any iterative method (such as

subgradient optimization) to compute ZD. For each ut t 1 , generated during

the iterative process, the subproblem in x and y

Minxy E . ci xi + ' fjy. - !' u.(E. xi. -)

d dii. - sjy. for all j

0S x. ! y. for all , j

> y d

Y E {0,1} for all j

is solved. The vector (XD, YD) so obtained produces a Lagrangian bound, but

the vector YD can also be used to generate a heuristic solution. Indeed,

given YD, one can solve a transportation problem to get a feasible solution

x D Thus at each iteration of the iterative process, a heuristic solution

(RD' YD) can be generated. The best solution found in 50 or so subgradient

iterations can be used as a heuristic. We find that this heuristic is just as

fast and gives much better solutions than the more commonly used greedy-

T
interchange approach. Instead of ZD, one can also use ZC or ZC as the basis

for the heuristic but we do not recommend it, as little additional accuracy is

gained at much computational cost.



Section 5 contains probabilistic results. This analysis improves our

understanding of the CPLP in a new dimension and complements the computational

study of Section 4. For the probabilistic model that we choose, the -'

.-

relaxations fall into three categories. For relaxations such as ZBI, the

relative error as an estimate of Z can be expected to be over 66%. For bounds

such as Z or Zn the relative error can be expected to be below 0.21-

Finally for the relaxations ZC, ZCT and Z, the relative error can be exected.2%.

to go to 0 as the size of the instances goes to infinity. In particular, we

show that the classical linear programming relaxation ZI has a "duality gap"

which is no greater for CPLP than for the Simple Plant Location Problem

(SPLP). This seems to contradict the common belief that CPLP's have larger

duality gaps. We should remember that our probabilistic analysis is limited .

by various assumptions. For example, it assumes that the number of clients

served by each open facility is large.

-°.

2. Relative Strength of the Relaxations

In Theorem 1, we compare the strength of the various linear programming

relaxations and lagrangian duals of CPLP. We compare all the possible bounds .

that can arise in this way, except that we do not relax (N) (there is never

any computational gain in doing so), nor do we consider complete relaxations I

of (C) or (D) since we feel that such bounds would be of little interest in

solving CPLP (ZC and ZD are NP-hard to compute, yet they lack important

aspects of CPLP.) Specifically, we consider all the combinations where (T)

and (B) are present, relaxed completely or in a Lagrangian fashion, and where

(C) and (D) are present or relaxed in a Lagrangian fashion, i.e. 3x3x2x2 36

relaxations, as well as the LP relaxations Z, ZB, ZTI and ZTBI In

addition, we consider the relaxation Z6 of Christofides and Beasley defined in
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Section 1 above. Theorem 1 states that these 41 relaxations only yield 7
p

genuinely different bounds. It is interesting to note that 6 of these 7

bounds have already all been proposed in the literature as the basis for

branch-and-bound algorithms.

In Theorem 2, we briefly discuss relaxations that can be obtained by

variable splitting. We show that no new bound arises from these relaxations.

We use the following notation. Given a constraint set (S), P(S) denotes

the convex hull of the vectors satisfying (S). More generally, if

($), ....(Sk) are constraint sets, P(S1 .. Sk denotes the convex hull of the

vectors satisfying (SO) ...,(Sk). For example, with this notation, we can

write

ZT B :min cx + fy

(x,y) c P(DCIN).

Using a classical theorem (see Geoffrion [13, Theorem ID] for example),

the Lagrangian duals can also be expressed using this notation. As an

example,

Z :min cx +fyTC

(x,y) c P(TC) n P(DINB).

*. Now we are ready to prove the following Theorem.

Theorem I The following inequalities hold



B. I 1

z c

every inequality in (2.1) is strict for at least one instance of CPLP, and no

other inequality exists among the values of (2.1) except those derived by

transitivity.

The following equalities hold

B T ~ B T zTB(2.2) Z ZB  ZB  ZT  Z T  B T z
= = =TB = T = ZB =

(2.3) ZD =ZDC =ZBD =ZBC= Z =ZB

(2.4) zB zB
C DC

T(2.5) Z : ZTC

(2.6) Z zT T T T T
(26 = = ZTD D = TDC z DC = BTC = BC = BTDC BDC

B BT T "Z TD Z D = BTD = BD

BI zTBI B TB B TB
(2.7) Z = ZTC = C = TDC = DC*

Proof: In (2.1), the inequalities ZBI < Z' and Z Z : Z are immediate by

relaxation. Z; < Z follows from the fact that the constraint used in Z'D
D D

in place of (T) is actually implied by (I) and (T). Using the property that

Lagrangian duals are at least as strong as the corresponding linear

,.I
4.C V-r* * *
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programming relaxation (Geoffrion [13]), we get Z Z' Z < ZB and
zIT T IC  TC v

z T ZT The last inequality implies Z < Z provided we can show

ZI  Z IT  This will be done in (2.6). ZB < Z follows from
C - D

zB < ZD provided we can show ZB = ZB This will be done in (2.4).
DC pr a ow ZDC*

Finally ZD ZC follows from ZDC 5 C provided we can show ZD = ZDC* This

will be done in (2.3). So, to show the validity of the theorem, it remains to

prove the equalities (2.2) - (2.7) and to exhibit instances showing that all

the inequalities in (2.1) can be strict and that no other inequality exists

among the bounds considered in (2.1). These results are provided in the next

two lemmas.

-* Lemma 1 The equalities (2.2) - (2.7) hold.

Proof: We give polyhedral proofs of these results. See [281 for algebraic

proofs.

The constraints (T) and (B) can be derived from (D), (C), (I) and (N) as

shown in the introduction. Therefore P(DCIN) = P(TBDCIN), proving (2.2).
B.

To prove (2.3), we first show that Z = Z and then that Z : z"
D BDC D 1?

The first equality holds if we can prove the polyhedral result

(2.8) P(D) n P(BCINT) P(BDC) n P(INT).

Since P(BDC) P(D) n P(BC) we only have to show

Claim

(2.9) P(BC) n P(INT) P(BCINT).

A --
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Proof of Claim:

By definition of P, P(BCINT) C P(BC) n P(INT). Now consider any extreme point

of P(BC) n P(INT), say (x,y). If y has only 0,1 coordinates, then

(x,y)EP(BCINT) and the claim is proved. So assume that y has at least one

fractional component. We will show that this cannot occur. Denote by

P (INT) the projection of the polyhedron P(INT) onto the y-space. Sincey-

P y(INT) has only integral vertices, y is not a vertex and therefore

- 1 1 1 2 ' 2 - 1 2
y =-y + y where y ,y e P (INT). if y. 0, set x.. = x.. = 0.

y 3] 2.
Else, set x j: xij (Y./Y.) for k= 2. We have (xk ,k P(BC) n P(INT)

k -I , ,y 2,

for k=1,2 and (xy)= 2 (x,y) + 1(x ,y ). This contradicts the assumption

that (x,y) is an extreme point of P(BC) n P(INT). Thus the claim is

proved.

Now we prove Z = Z by showing
D D

(2.10) P(D) n P(BCINT) = P(D) n P(CINT).

This relation follows from the fact that (C), (I) and (N) imply (B). This

completes the proof of (2.3).

To prove (2.4), we show that

(2.11) P(C) n P(INTD) P(DC) n P(INT).

Since P(DC) P(C) n P(D), it suffices to show P(D) n P(INT) P(DINT). The

constraints (D), (I), (N) and (T) completely separate into the constraints

involving x and those involving y. The convexification step only involves the

h!
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variables y and, therefore, the result follows. This completes the proof of

(2.4).

The equality (2.5) follows from P(C) n P(DINB) = P(TC) n P(DINB), since

(T) is a consequence of (C) and (D).

Now we show (2.6). First, ZI = ZTI since (T) follows from (C) and (D).

BTWe hv
First, we give a polyhedral proof of ZD = ZTe

D TD W hv

P(D) n P(CIN) = P(D) n P(CINB) = P(TD) n P(CINB), where the first equality

holds because (C), (I), (N) imply (B) and the second equality holds because

(D) and (C) imply (T). So all the relaxations in (2.6) are at least as strong

I TIIas Z = ZT . To complete the proof of (2.6) if suffices to show ZTD z

and ZBTC Z

To show ZTD z note that

(2.12) P(TD) n P(CINB) = P(TDCNB)

. : Z I

follows from P(CINB) = P(CNB). To show ZBTC Z, note that

(2.13) P(BTC) n P(DIN) P(BTCDN)

follows from P(DIN) = P(DN).

Finally consider (2.7). ZBI ZTBI holds as (T) follows from (C) and

(D). So it suffices to show ZBI zB Similar to the proof of (2.13),
TC"

this follows from P(DIN) = P(DN).

U,

To complete the proof of the theorem, it suffices to exhibit instances

showing that all the inequalities can be strict.
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Lemma 2: There exist instances of the CPLP showing that each of the following

inequalities can hold.

(2.14) ZBI < Z
I

(2.15) Z < z B

CC
T <B

(216) Z C  < Z C _.

(2.17) ZT Z.
C D

T.-

(2.18) ZD < zC .

(2.19) ZB < zI
C

(2.20) ZC < Z.

Proof: First we give an example that satisfies (2.14) and (2.15).

d:=

0 3 2ij 0 o 3

s 3 5

f 2 3 ""

To compute ZBI, we solve the corresponding linear program. Its optimum F

solution is yl = 1 Y2  2/5, x 11 = 1, x 12  0, x2 1 = 1/3 and x2 2 = 2/3,

yielding the bound ZBI : 16/5. Now consider ZI  Its optimum solution is the

same as for ZBI, except that Y2 = 2/3. This yields ZI  4. Thus this example

shows that (2.14) can occur.

Note that, for this instance, the constraint (T') used in Z6is Y + Y2

1 and therefore does not strengthen the relaxation ZT Since we have proved

that zT :ZI T -
I

t - , we get Z'D :T Z : 4.

BNow we compute Z Consider the Lagrangian relaxation
C.

Z Min Z c..x.. + Ey + ( d x . )
C v i i i i i sjyj '
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z x ij Ifor all i

zj s Jy Z d i

y. (0,11 for all j.

If we set v, 2/3, v2 = 0, an optimum solution of the Lagrangian

relaxation is Y = Y2 = 1, x 1 1 = 1, x 12 = 0, x2 1 = 1/3, x22 = 2/3. The

corresponding value is ZB 5. Since we also have Z 5, we deduce
Cv

ZB = Z = 5. Therefore the strict inequality (2.15) is satisfied by this
C

instance of the CPLP.

To prove that (2.16) and (2.17) can hold, consider the previous example,

where s2 = 5 is changed into s2 =4. It is easy to check that this

modification does not affect Z and Z . But, now, the constraint (T') used

in ZD Y + y2 
- 2 and therefore ZD 5. Next we compute

T Maxv 0 zT, where

ZT Min Ei. c..x.. +E f y + v ( d x y)CvIj ij ij j j i i ij -sjyj

E. x.. = 1 for all iJ ij

0 xi - y. for all i, j

y C (0,I for all j.

This constraint set is totally unimodular as it is a simple plant location

problem with two clients and two locations (see Cho, Padberg, Johnson and

Rao[51 for example). Therefore Z = ZI = 4. This proves that (2.16) and
C

(2.17) can occur.

Next we give an example that satisfies (2.18).

1 00 1

(c )0 1 0 1
ij

0 0 1 1
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s:3 3 3

f 1 1 1 

The optimum value of the linear programming relaxation Z 3/2 is obtained by

taking the solution yj = 1/2, xij 1 1/2 if i * j and xij 0 if i j.

Note that for this instance ZT = since there is no capacityD zZ65 ZD sneteei ocpct

constraint in effect. Since we have proved that ZTD = Z, we obtain ZD = ZD

zTD = ZI = 3/2.

Similarly ZC  = Z since the capacity constraints are automatically

satisfied. This shows that z Z z 2

Therefore this instance shows that possibility (2.18) can occur.

Finally we give an instance that satisfies (2.19) and (2.20).

0 2 1 2

(c ) = 1 0 2 2

2 1 0 2

s: 3 3 3

f = 3/2 3/2 3/2

To prove (2.19), note that ZC  3 since yl y2  y3  and x= if i=j and 0C 2 3 3

if i*j belongs to P(CD) n P(INT). On the other hand, ZI=4 since

2 2 1
y1 = Yy 3  and x -x -X x- x -x -x - is an

2: Y3:3 an 11: 22= 33= 3' '13 -2 x32: 3' X12 = x 2 3 = 31=

optimum solution of the linear programming relaxation. To prove (2.20), note

that Z : 9/2 is obtained by setting y, = Y2 = Y3 : 1, xij 1 if i = j and 0

if i * j. For the solution of ZC, consider v, : v2  1 v3 = 1/6 in the

Lagrangian relaxation ZCv* Then the same solution (x,y) is optimum. It

yields the value ZCv = 4 . Furthermore the subgradient at this point is

negative in each component, so its projection on the nonnegative orthant is

zero. This shows that Z = 4, proving (2.20).
I

4/ ~*~s~~ ~~ ~ X.. q -. 55# 5 -~ .:.- .
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This completes the proof of Lemma 2. 0

We close this section with results about variable splitting. It will be
N

useful to generalize the notation introduced in Section 1. If the set of
inequalities (SI ) consists of the constraint sets (S ,.... k"

inequlitie ~ ( 1) 1 ad( 2)

consists of (S then the bound defined by the split ( (S2 )
o sits o 2S),...,(S2 )

and X is denoted by Z($2 1 Si As mentioned in the introduction,andX i deote byZ(1...$ 1' S2 ..

this value is obtained by minimizing cx + fy over

1 k 1) n ( ZX
(2.21) (x,y) e P(SI..S I  $)n P S2 .... -2 ")

Let us consider all the possible splits of the constraints (D), (C), (B), (T),

(I) and (N) for CPLP. Our main result is that no new bound arises this way.

Therefore variable splitting can be viewed as a different method for obtaining

the bounds presented in Theorem 1. We make the following observations. If

(I) is not in X, then only one of the two polyhedra in (2.21) is convexified

by integality and therefore the corresponding bound is one of the Lagrangian

dual bounds studied in Theorem 1. So we assume that (I) belongs to X. We

also assume that (N) belongs to X as no benefit can be gained by doing

otherwise. There are 25 possible splits of (D), (C), (B), (T), (I) and (N)

with the property that (I) and (N) belong to X. If (SI) or (S2 ) is reduced to

one of the sets (B), (T) or (B) U (T), then we do not get a true relaxation of

CPLP, as one of the subproblems is CPLP itself. Therefore the true

*. relaxations have the property that (D) belongs to (S1 ) and (C) belongs to

(S2 ) or vice-versa. There are 9 such relaxations of CPLP. The bounds they

produce equal Zc or ZD.
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Theorem 2 The following equalities hold

(2.22) Z(T,*) = Z(B,*) = Z(BT,*) = Z

where * stands for any subset of the remaining constraints,

(2.23) Z(C,D) = Z(C,DB) = Z(C,DT) = Z(C,DBT) Z(D,TC) Z(BD,TC) Z C

(2.24) Z(D,BC) Z(D,TBC) Z(TD,BC) Z D '

Proof = (2.22) is immediate as one of the two subproblems is CPLP itself.

Next, we prove (2.23). Note that Z(C,D), Z(C,BD), Z(C,DT) and Z(C,DBT) .

are all at least as strong as ZC, and Z(C,D) is the strongest of the four. To

prove ZC  : Z(C,D) we show the polyhedral result P(C) n P(DINTB) =

P(CINTB) n P(DINTB). This follows from P(CINTB) = P(C) n P(INTB) as we

have already shown in (2.9), and from P(DINTB) C P(INTB). To complete the K

proof of (2.23), it remains to show Z(D,TC) = Z(BD,TC) = Z.. The feasible set 5

for Z(D,TC) is P(DINB) n P(TCINB). Using (2.9), we have P(CINTB) = P(B) n

P(CINT) and therefore Z(D,TC) = Z(BD,TC). Again, from (2.9) P(DINB) n -a.

P(TCINB) : P(DINB) n P(INT) n P(C). In order to prove Z(D,TC) : ZC, we must

show P(DINTB) : P(DINB) n P(INT). Let (x,y) be an extreme point of P(DINB) ,

n P(INT). Note that (y: (x,y)EP(INT) for some x} C ty: (x,y) e P(DINB) for

some x) = {Y: j yj > 1} using the fact that Z. d. > 0. Therefore ,

an extreme point of the knapsack problem defined by (T), i.e. y is a 0,1

vector. As (x,y) c P(DINB), x is also a 0,1 vector. Thus (x,y) is a 0,1 I

vector auid (x,y) c P(DINTB).

)S
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Finally consider (2.24). Z(D,BC) and Z(D,TBC) are at least as strong as

ZD. To show that they are equal to it, it suffices to show that the feasible

set for Z(D,BC), namely P(DINT) n P(BCINT), is identical to the feasible set

for ZD, namely P(D) n P(BCINT). This follows from P(DINT) = P(D) n P(INT)

and P(BCINT) C P(INT). Now consider Z(TD,BC). It has feasible set

?(TDIN) n P(BCIN). The equalities P(TDIN) = P(D) P(TNT) an..

P(BCIN) = P(BC) n P(IN) imply Z(TC,BC) ZD.

3. Computational Complexity

In Section 2, seven different bounds were obtained for CPLP, namely ZBI,

z1, ~, ~, B zTZ , Z9 ZD, ZC , ZC and ZC. Here we consider the computational complexity of

calculating these bounds. We also consider the complexity of computing the

optimum value Z of CPLP itself.

Theorem 3

(3.1) ZBI, ZT and can be computed in polynomial time.

(3.2) ZD and Z can be computed in pseudo-polynomial time.

T(3.3) Computing ZC, ZC or Z is strongly NP-hard.

Proof = Linear programs can be solved in polynomial time, so (3.1) holds for

BI I
Z and Z Z6 is obtained by minimizing cx + fy over

P(D) n P(CBINT') = P(DCB) n P(INT'). The constraint set (N), (T') is

totally unimodular. So computing Z6 reduces to the solution of a linear

program. This proves (3.1).

BComputing ZD or Z is NP-hard since, when c=O, the problem is nothing
D C

but a knapsack problem. Next we show that ZD can be computed in pseudo-

polynomial time. To get ZD, we optimize cx + fy over P(DCB) n P(INT). If

S.

5-,

S j ,,L °o , " ,, 2C ° ' ';. .,., j.
' . .
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follows from a result of Grbschel, Lovasz and Schrijver [151 that optimizing

over P(DCB) n P(INT) requires at most pseudo-polynomial time since

optimizing over P(DCB) is polynomial and optimizing over P(INT) is pseudo-

Bpolynomial. To get ZC, we optimize cx + fy over P(DC) n P(INT). so the

same argument can be used. This proves (3.2).

Finally, (3.3) follows from the fact that SPLP is strongly NP-hard and

polynomially reduces to CPLP by setting the capacities s large enough. 0

Although CPLP is NP-hard, there are some special cases that can be solved

in polynomial time. In the next theorem, we show that CPLP can be solved in

polynomial time when the capacities and the demands are taken from the set

{1,2} and it is NP-hard when the capacities are taken from the set {l,....pl,

P2! 3 even if all the demands are equal to 1. We also consider the complexity

of computing ZD, ZB ZT and Z. under the last assumption.DC, C

Theorem 4

(3.4) CPLP is strongly NP-hard when the capacities are taken from the set

(1,...,p} for any fixed p >_ 3, even if all the demand are equal to 1. Under
B.',

this assumption, ZD or ZB can be computed in polynomial time but computing ZT

or Z is strongly NP-hard. S

(3.5) CPLP can be solved in polynomial time when the capacities and

demands are taken from the set t1,2}.

Proof: We will prove that CPLP is strongly NP-hard for p _ 3 by reducing the

3-dimensional matching problem (3DM) to CPLP.

3DM is defined by three distinct sets I, J, K, each of cardinality n, and

a family F of triplets (i,j,k) where i e I, j e J and k E K. The question

. . . . . . . . . .... '- .
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is whether there exists S C F of cardinality n such that the 3n elements of I,

J, K each appear exactly once in the triplets of S. This problem is NP-

complete (Garey and Johnson [12]). We construct a CPLP as follows. There

are 3n clients corresponding to the elements of I, J, K and n3 facilities

corresponding to all the triplets (i, j, k) with i e I, j e J, kE K. The

transportation costs from a triplet (i, j, k) E F to i, j and k are equal to

0. All other transportation costs are equal to 1. The capacities are equal

1to 3, the demands to 1 and the fixed costs to e < -. 3DM has a solution ifn

and only if CPLP has a solution with value n e.

To see that Z or ZB can be computed in polynomial time, note that
D

0 . d. E i s. 5 pn, where, here, n denotes the number of facilities.

Since p is fixed, a dynamic programming algorithm for solving the knapsack

problem defined by (T) is polynomial. The result now follows from Grbschel,

Lovasz and Schrijver [15].

To see that ZT and Z are NP-hard, note that the transformation of 3DMC

described above is valid even if we relax the capacity constraints (C) and (T)

completely. 3DM has a solution if and only if ZTC has the value ne. This

completes the proof of (3.4).

C Now we prove (3.5). From an instance of CPLP where the demands and
t.

capacities are taken from {1,21, we construct a graph as follows. For each

customer i with demand di we construct di nodes, for each facility j with

capacity sj we construct si nodes and for each facility j with capacity 1 we

construct an additional node. The corresponding node sets are denoted by U, V

and W respectively. The graph has an edge with cost cij joining each node of

U associated with customer i to each node of V associated with facility j.

For each facility j such that s 2, the two nodes of V associated with j are

joined by an edge with cost - f Finally, each node of V associated with a
.1 1~j4
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facility with sj = 1 is joined to the corresponding node of W by an edge of

cost - f. Now CPLP is equivalent to solving a minimum cost matching problem
J.

in this graph, where each node of U is required to be exactly matched and each

node of V U W must meet at most one edge of the matching. (The closed

facilities correspond to the nodes of V that are matched to a node of W or to

another node of V). (3.5) follows from the fact that the matching problem can

be solved in polynomial time (Edmonds[9]). E

It is interesting to note that, although Z can be computed in polynomial

time under the assumption made in (3.5), it is not clear whether Zc and Z

can. In fact, there are values of the Lagrange multipliers for which the

Lagrangian relaxations Z and Z' are NP-hard to solve. (For example,
Cv CV

the reduction of 3DM used for proving (3.4) is still valid when v = 0.)

4. Computational Results

I TOur computational study compares the relax!tions Z , Z Z and ZC  to
D' C

the optimum value Z of CPLP. We also compare a dual-based heuristic to greedy

and interchange heuristics. One objective of the study is to test the

tightness of the bounds as a function of parameters of the problem. In

particular, we consider the influence of tight capacity constraints.

ZD is computed using a subgradient algorithm stopped after a maximum of

200 iterations. The knapsack subproblems are solved using the algorithm of

Fayard and Plateau[11]. To compute ZT , we solve the Lagrangian dual giving

T Z I  TZ by a subgradient algorithm (recall that I= ZD To ootain
ZDC DC

zT, ZC and Z, we implement the cross decomposition of Van Roy [30]. The

optimum value Z is computed using a branch-and-bound algorithm based on the

bound ZC. The bound ZC itself is calculated by solving iteratively a sequence

'VPC
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of problems Z~u. For each value of u, Z is obtained using a branch-and-

bound algorithm based on ZT Finally, the simple plant location problemCu"

Tthat yields Z is solved using the dual ascent procedure of Erlenkotter
Cu

[10] which also involves branch and bound. Clearly, due to the triply nested

branch-and-bound algorithms, cross decomposition is most effective when the

duality gap Z - ZT is small. Dual heuristics are needed to accelerate the

search for the optimal Lagrange multipliers. Lacking this, it is not obvious

how to generate good dual information from the primal subproblems. For the

harder problem instances, the cross decomposition method often reduces to a

rather inefficient column generation method, as corroborated by Van Roy.

On the heuristic side, we implemented DROP-HI and VSM - a greedy

heuristic starting from all facilities open and an interchange heuristic,

respectively - as described in Jacobsen[20]. The implementation suggested by

Khumawala [21] gives similar, although slightly inferior, results. The

computational results provided below follow Jacobsen [20]. We also consider a

dual-based heuristic, denoted by (H). At each step of the subgradient

algorithm for computing ZD, a solution (xD, YD ) of the Lagrangian subprobiem

is found. If it is feasible for the original problem, it is an optimum

solution. Otherwise, consider YD as the set of open facilities and solve a

transportation problem to find a feasible solution (xD' YD "  The best such

solution found during the subgradient iterations is taken as the solution of

heuristic (H). We have observed that, Lypiudlly, oriy fL different vectors

YD are generated during the algorithm and so only few transportation problems

have to be solved. We use the code of Srinivasan and Thompson [291 for

solving the transportation problems.

To validate our algorithms, we solve the classical test problems of Kuehn

and Hamburger [23] and are able to confirm the computational results already
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Z-ZC
reported in the literacure. For example our evaluation of Z coincides

OPT

with O in table II of Van Roy [30] in all but one of the instances. (In

problem 24, we found .18% instead of .21% but Van Roy truncated his branch-

and-bound after 2000 nodes whereas we did not.) Van Roy does not report

T TZ C We found that Zc = ZC  for all the problems except problems 11 and 12,TCC

where Z = .074% and .277% respectively. Regarding ZD, our results are

better than expected. The reason is that, although Nauss [25] recommends to

compute the bound ZD in his paper, he reports computational results that are

not based on ZD. More specifically, Nauss relaxed the integralitV

requirements in the knapsack subproblems needed to compute ZD (see first

sentence of second paragraph in section COMPUTATIONAL RESULTS of [25]). The

reason for doing this is unclear, since the knapsack subproblems are very easy

to solve when all the s,'s are equal. As a result, Nauss computed Z instead

of ZD' Indeed, iA Table I of 1251, the gaps closed by LGRI and LGR2 after

subgradient optimization are very similar. (By Theorem 1, they should

eventually be identical, after sufficiently many steps of the subgradient

algorithm.) By solving true knapsack subproblems, we find that ZD often

greatly improves on Z' For example, ZD = Z for problems 6, 8 and 9 as

numbered by Nauss. Going back to the numbering of Van Roy, we find that D

Z for problems 1-6. For the more tightly capacitated problems 7-12, we find
Z-Z D

D .06%, .20%, .64%, .95%, .66% and .36% respectively. For these 12
Z

instances, the heuristic (H) always finds the optimum solution. The heuristics

DROP-HI and VSM perform reasonably well (see Jacobsen [201).

To complement these results, we run the algorithms on a different and

larger set of test problems.

We generate 5 sets of 30 problems. In each set, there are 5 problems of

each of the following sizes - 25x8, 25x16, 25x25, 50x16, 50x33, 50x50 where
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the first number is the number of clients and the second is th. number of

facilities. The transportation costs are computed by generating points

representing the clients and facilities uniformly in a unit square. The

Euclidean distance between them is multiplied by iC to define unit

transportation costs. The demands are generated from U[5,35], where U[a,b]

denotes the uniform distribution in the interval [a,b). The capacities sj are

generated from U[10,160] and the fixed costs by the formula f. U[0,901 +

U[100,1101 vs. to reflect economies of scale. From the above data, 5

different sets of problems are generated by scaling the capacities using the

ratios d 1 1.5, 2, 3, 5, 10. Finally fi is doubled for the first 2Z. d." '"

I I
sets. Although the above choices are somewhat arbitrary, our objective is to

generate a reasonably difficult set of test problems. The actual data are

available from the authors.

We report our computational experience with these 5 sets of problems in

Tables I-V. In each case we give the relative error of the bound to the
Z-ZC

optimum value. For a relaxation such as ZC we report z and for a

Z (H) -Z
heuristic with value Z(H) we report Z

S.z
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Table I E s 1.5 E d

Relaxations Heuristics
Relative Error % Z ZT ZI  H VSM DROP-HI

C D C

0 0 5.70 5.88 0 0 17.27
0 0.01 6.38 6.85 0 5.73 5.73

25 x 8 0 0.02 5.85 6.67 0 6.22 11.14
0 0 1.30 5.10 0 13.13 13.13
0 0.02 5.48 5.71 0 8.82 8.82

0.37 0.37 3.05 3.39 0 15.69 15.69
0 0 3.12 14.32 0 6.23 20.80

25 x 16 0 0 2.14 15.07 0 13.30 13.30
0.12 0.12 1.63 2.49 0 10.92 15.20
0.01 0.07 3.09 20.87 0 0.29 5.36
0 0.01 1.41 46.88 0 5.95 30.01
0 0.01 0.54 2.05 0 10.02 20.96

25 x 25 0.04 0.09 1.65 2.30 0 9.18 26.96
0 0 1.93 15.28 0 15.01 38.25
0.07 0.09 1.55 29.27 0 12,57 26.36

0 0.01 2.18 4.30 0 15.30 17.97
0 0 0.42 1.23 0 17.75 23.71

50 x 16 0 0.01 2.27 2.45 0 4.08 24.42
0.26 0.29 2.07 2.10 0 2.77 16.78
0 0 0.91 9.27 0 10.48 22.86
0.10 0.14 1.48 3.49 0 25.52 26.24
0.05 0.10 1.17 17.33 0 19.35 24.10

50 x 33 0 0.16 0.18 0.59 0 18.58 28.02
0.12 0.14 1.03 3.01 0 5.77 26.10
0.05 0.09 1.61 2.89 0 11.72 29.98

0 0.06 0.25 1.45 0 * 27.63
0 0.07 0.09 19.62 0 * 26.08

50 x 50 0 0.02 0.38 32.96 0 * 24.44

0.01 0.02 0.19 0.41 0 * 28.88
0 0.10 0 11.80 0 * 27.58

Average % 0.04 0.07 1.97 9.83 0 10.57 21.46

• time limit of 120 seconds on DEC 20 exceeded.

- 7:- *
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Table II Z s = 2 E. d.*j J1 1

Relaxations Heuristics

Relative Error % - ZT - H - DRO-_ - _

C  ZD ZT HI VSM DROP-HI

0 0 5.94 6.22 0 0 24.05
0.75 0.79 10.31 10.32 0 0.82 8.40

25 x 8 0 0.05 7.48 7.80 0 4.27 14.40
0 0.02 2.23 2.25 0 0 35.71
0 0 5.24 5.26 0 19.54 21.84

0.19 0.19 4.91 4.97 0 10.36 41.98
0.04 0.09 1.43 1.47 0 13.00 22.36

25 x 16 0 0 2.09 2.27 0 8.75 38.64
0.15 0.15 4.36 4.36 0 14.30 20.91
0 0 2.74 3.34 0 18.59 44.04

0.05 0.12 2.28 2.28 0 4.82 34.68
0.18 0.23 1.42 1.57 0 9.56 29.89

25 x 25 0 0.04 0.78 0.84 0 20.25 40.33 t
0 0.03 1.76 2.38 0 13.30 37.25

0.11 0.12 3.04 3.07 0 6.76 41.36

0 0.19 3.66 3.89 0 13.19 27.92
0.01 0.17 2.55 2.57 0 5.93 23.11

50 x 16 0 0 0.46 0.49 0 11.05 25.08
0.42 0.43 2.45 11.85 0 14.12 14.12
0 0 0 0 0 7.61 41.27

0.04 0.04 1.50 1.50 0 10.84 4 .67
0.09 0.09 1.15 1.19 0 11.81 32.34

50 x 33 0.08 0.10 1.52 1.86 0 19.98 47.39
0.01 0.02 0.67 0.81 0 14.38 28.48
0.09 0.09 1.34 1.34 0 12.82 39.08

0 0 0.23 0.34 0 * 36.27
0.21 0.27 1.01 1.25 0.01 * 41.60

50 x 50 0 0.02 0.14 1.43 0 * 45.38
0 0.03 0.13 0.36 0 * 39.02
0 0.04 0.02 0.13 0 * 42.78

It.

Average % 0.08 0.11 2.43 2.91 0 10.64 33.21

0I

%"
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Table III Z. s. = 3 . d.

Relaxations Heuristics

Relative Error %
C  ZD Z H VSM DROP-HI

0 0 7.06 8.94 0 0 12.85
0 0 1.47 1.71 0 12.10 22.81

25 x 8 0 0 5.69 5.91 0 0 3.92
O O 4.98 5.07 0 8.97 16.11
0 0 4.13 4.63 0 10.38 30.23

0 0.04 6.00 6.10 0 2.90 39.29
0 0 1.45 1.47 0 9.65 39.18

25 x 16 0 1.48 4.38 8.44 0 3.13 39.35
0 0.25 5.44 5.54 0 0 60.09
0 0.09 3.65 3.65 0 0 39.47

0.11 0.11 0.39 0.41 0 16.97 62.02
0.20 0.33 4.60 4.63 0.09 0.69 53.54

25 x 25 0 0.06 0.45 0.45 0 1.56 53.93
0.92 1.19 2.06 2.09 0 17.82 52.53
0 0.44 2.18 2.26 0 0 61.60

0.19 0.82 4.10 4.71 0 6.90 33.88
0.13 1.55 5.55 5.66 0 0.63 15.29

50 x 16 0 0 1.34 1.41 0 0 26.03
0 0 1.95 2.40 0 3.35 26.83
0 0 2.08 2.08 0 0 41.84

0.03 0.46 2.40 2.51 0 11.40 53.72
0.56 0.70 2.90 2.93 0 12.37 54.61

50 x 33 0.76 0.92 1.53 1.59 0 8.38 47.45
0.27 0.30 0.76 0.79 0 13.02 40.10
o.41 0.75 2.06 2.06 0 2.35 53.66

0.17 0.26 1.43 1.43 0 4.20 64.06
0.52 0.55 1.14 1.16 0 * 62.71

50 x 50 0.29 0.51 0.88 0.88 0 11.71 44.40
0.30 0.35 0.52 0.56 0 * 49.08
0.24 0.39 0.71 0.73 0 44.47

Average % 0.16 0.38 2.78 3.07 0 5.87 41.50
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Table IV E sj = 5 i d.

Relaxations Heuristics

Relative Error %. Z H VSM DROP-HI
C  ZD  Zc [ H VM DO-

0 0 11.61 11.75 0 0 3.92
0 0 5.95 5.95 0 3.98 10.64

25 x 8 0 0.31 5.39 5.65 0 0 18.88
0 2.28 11.40 11.66 0 0 11.90
O 0 0 0 0 0 23.92
0 0 1.57 2.07 0 0 59.50
0 0 0.22 0.82 0 1.61 49.81

25 x 16 0 0 3.72 4.06 0 4.55 37.36
0 0 1.76 2.01 0 3.18 25.06

0.12 0.12 1.54 2.34 0 0 40.53

0 1.07 3.76 3.89 0 3.33 52.94
0.19 0.74 2.68 12.10 0 13.31 32.80

25 x 25 0.27 2.57 5.90 5.90 0.07 7.11 59.22
0.30 0.53 2.43 2.90 0 0 64.85
0 0.22 2.11 2.20 0 2.22 34.07
0 0 0.51 1.40 0 0 30.36
0 0.70 3.27 3.68 0 2.37 28.91

50 x 16 0.38 0.38 1.87 3.92 0 0 31.11
0.65 2.10 4.73 4.90 0 0 22.01
0 0.85 4.13 4.31 0 1.76 25.55
0 0.53 1.79 1.87 0 0 50.15
0 0.01 0.81 0.91 0 5.46 68.73

50 x 33 0 0.29 1.25 1.27 0 0 52.80
0.07 0.15 0.92 1.17 0 1.93 69.54
0.34 1.16 2.12 2.20 0 3.78 45.31
0.35 0.51 1.27 1.30 1.13 8.56 64.41
0.41 1.34 2.80 2.84 1.24 0.92 79.34

50 x 50 0.22 0.82 2.45 2.45 0.01 17.38 58.11
0.01 0.43 0.89 0.89 0.42 0.26 67.37
0.48 0.68 2.48 2.48 2.02 1.37 52.14

Average % 0.13 0.59 3.04 3.63 0.16 2.77 42.37
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Table V Z s = 10 Ei d

Relaxations Heuristics
Relative Error %

Z Z ZT ZI  H VSM DROP-HI
C D C

0 0 6.06 6.10 0 0 17.68
0 0 0 0.31 0 0 24.90

25 x 8 0 0 0 0 0 0 22.09
0 0 6.04 7.31 0 2.10 3.32
0 0.21 3.51 3.69 0 0 1.91
0 0 6.20 6.35 0 0 22.37
0 0 8.24 9.82 0 0 35.20

25 x 16 0 0 9.08 9.39 0 0 51.02
0 0 0 0.61 0 0 58.71
0 0 0 0 0 0 34.97
0 0 1.12 1.21 0 0 48.54
0 0.43 10.41 11.32 0 5.39 64.99

25 x 25 0.05 0.08 3.74 3.74 0 3.05 41.00
0 0 5.35 5.90 0 1.55 51.62
0 0 5.36 8.78 0 8.41 80.28
0 0.13 4.13 4.64 0 0 18.02
0 1.24 6.31 7.77 0 0 7.52

50 x 16 0 2.02 4.46 6.26 0 0 19.63

0 0 0 0 0 0 21.89
0 0 1.80 2.37 0 0 27.11
0 0 2.23 14.10 0 10.50 62.96
0 0 0.27 0.29 0 0 50.59

50 x 33 0 0.13 2.33 5.36 0 0 37.67
0 0.72 1.77 1.88 0 7.98 48.65
0 0 0.35 0.49 0 0.94 58.59

0.01 0.51 2.31 10.94 0 1.07 77.06
0 0 0.81 0.94 0 10.22 81.07

50 x 50 0.04 0.83 3.50 4.32 0 0 76.16
0.02 0.30 1.56 2.01 .10 0 75.74
0.05 0.90 3.85 4.59 .22 5.62 63.11

Average % 0.01 0.25 3.36 4.68 0.01 1.88 42.81

Some remarks can be made about Tables I-V. The relaxations Z and ZD are

both significantly stronger than Zc and Z for this set of test problems. ZC

is about twice as strong as ZD for the tightly capacitated problems and this

advantage increases for the less capacitated ones. The quality of both bounds

deteriorates in the intermediate range, i.e. s 3 and 5, but
j jJ I
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never exceeds 1% and ZD never exceeds 3%. Whereas for the Kuehn and Hamburger
test problems ZT is frequently equal to ZC, here ZT is typically much

weaker. For the tightly capacitated problems, the negative effect of removing

the knapsack constraint (T) is more pronounced when there are few facilities

(e.g. 8 or 16). Our subgradient algorithm for computing ZI had difficulties

converging for the tightly capacitated problems of Table I. So the large gaps

appearing there should be interpreted with caution. DROP-HI and VSM are the

two heuristics recommended by Jacobsen, based on tests with the Kuehn and

Hamburger problems. Their performance is very different when the facilities

do not have identical capacities and fixed costs, as pointed out by Domschke

and Drexl [8]. Our own computational experience serves to reiterate this

warning. DROP-HI tends to close the large facilities first, clearly not a

good strategy. VSM performed reasonably well on the less capacitated

problems. However, the clear winner is heuristic (H), failing to find the

optimum solution in only 10 out of 150 cases. This is particularly remarkable

considering that the time needed to compute ZD and to find the heuristic

solution (H) only grows moderately with problem size. By contrast, VSM

exceeded the time limit of 120 seconds on a DEC 20 in thirteen instances.

Computing times are provided in Table VI. More extensive computational

results are reported in Sridharan [28].

'%2!2

"' S . . .~*-~- -- --

* . . * a ~ .*.. -. ~ ~ -'-~ ~ 'a% . ". V~



33
P.

Table VI Computing Times (Average of 25 problems). I

Seconds on IBM 3081 Seconds on DEC 20

Problem Size

Z Z T Z Z and Z' VSM DROP-HI
C C D H

25 X 8 0.9 1.0 2.1 1.7 0.6 0.1

25 X 16 14 12 5.7 3.9 2.8 0.2

25 X 25 140 69 11 9.0 9.6 0.5

50 X 16 34 23 8.7 9.6 5.7 0.5

50 X 33 1900 570 28 23 41 1.7

50 X 50 6800 5200 62 37 >92* 3.7 p

*13 instances exceeded the time limit of 120 secc-dz on a DEC 20.

5. Probabilistic Results

In this section we assume that:

(i) n clients are distributed independently and uniformly in the unit

square,

(ii) every client location is also a potential site for locating a facility, I

(iii) c is proportional to the Euclidean distance between points i and j,

(iv) all the clients have the same demand, independent of n,

(v) all the facilities have the same fixed cost f : f(n) and the same

capacity s s(n).

I
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(vi) s/log n w as n--,

(vii) n - f/2 ! n1- for some fixed E>O.

Although these assumptions are restrictive, we believe that they

represent an interesting starting point for a probabilistic comparison of

heuristics and relaxations for the CPLP. In fact, the results we are about to

present still hold under weaker assumptions. In (i), the shape of the region

can be almost anything (the neighborhood of the boundary must be of measure 0)

and the distribution can be nonuniform as long as mass is not concentrated.

In (ii), the potential sites need not coincide with the clients as long as

they have a similar distribution. In (iii), the Euclidean distance can be

computed after a linear transformation of the region. In (iv), the demands

can be different for each client as long as they are bounded independently of

n. In (v), the fixed values f and s can each be replaced by a small range of

values. The assumption in (vii) can be slightly relaxed to w//n !fs n/w

where w-m as n-m. Our goal in this section is only to give a flavor of

typical results and assumptions (i)-(vii) serve this purpose.

Without loss of generality, we take the constant of proportionality in

(iii) to be 1 and the demand in (iv) to be 1. Then, given f and s considered

as functions of n, the value Z Z(n) is a random variable for every n 1.

Similarly, relaxations or heuristics yield random variables ZR(n) or ZH(n) for

every n : 1. In this section we study the probabilistic convergence of such

sequences of random variables as n -> .

First, we introduce some notation. Let W(n) be a sequence of random

variables for n 1 1. We say that W(n) -> w almost surely if and only if
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(5.1) Pr[lim sup W(n) w : lim inf W(n)] : 1.

If we only have Prilim sup W(n) w] = 1, we say that W(n) s w almost

surely. A sufficient condition for (5.1) is (Borel-Cantelli lemma)

(5.2) n Pr[IW(n)-wl > e] <  for every fixed E>O.

Let V(n) and W(n) be two sequences of random variables for n 2! 1. We

write W(n) - V(n) almost surely if and only if W(n),/V(n) -> 1 almost

surely. Frequently, we simply write W - V almost surely. p

In this section, we show that the relaxations of the CPLP introduced

earlier fall into 3 classes according to the probabilistic convergence of

(Z-ZR)/Z. Let a = .32887076 ....

Theorem 5

Assume (i) - (vii). Then -[

(a) z - Z almost surely,

(b) ZD ZI almost surely and

Z /z >_ .99810744 almost surely, "1

(c) ZBI fn/s and

ZBI/z - .33333334 almost surely for f !5 (as) 3/2//n.

0",-
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For f > (as)3/2//n, the ratio zBI/z improves above 33% but the bound

ZBI is still significantly weaker than the ones considered in (a) and (b).

The 3 parts of the theorem are proved in Lemmas 6, 7 and 8 respectively. Our

analysis uses the following results.

Lemma 3: (Hoeffding [19]) If Y1, ".' Yn are independent random variables and

0 S Yi : 1 for i:1,...,n, then, for 0 ! E : 1,

2
Pr[jinY i  , (1+E)n] : E-e nij/3 A

where p is the expected value of (iniYi)/n.

Papadimitriou (261 introduced the following K-honeycomb heuristic.

Partition the plane into a regular hexagonal tiling, where each hexagon

has the same area 1/K. For each hexagon Hq that intersects the set of

clients, let P be the client closest to its center. Choose this set [P asq q
the set of open facilities. We denote by ZK the value of this heuristic.

Papadimitriou [26] proved that ZK is near-optimai for the K-median

problem. A similar result holds for the SPLP for an appropriate choice of K,

as shown in Ahn, Cooper, Cornuejols and Frieze [1].

Lemma 4: Assume (i) - (vii) and s=-. Then

2/3 '.(a) ZK - Z almost surely for K - c(n/f)

(b) Z 3a(fn2 )I/3 almost surely.
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To approximate the linear programming relaxation of SPLP, we define the

following feasible fractional solution for each K=1,...,n. For j=1,...,n, set

yj = K/n. For i=,...,n, define j* to be a facility such that cij < cij* for

at most n/K values of j and c.. < c..* for at least n/K + 1 values of j;

take xi. = K/n for n/K facilities j j* such that cij 5 cij*, take xij 1

- n/K K/n and xij = 0 for every other value of j. We call this solution the

K/n-uniform fractional solution and denote by ZF = .Z. c. .x.. + Kf its

value.

Lemma 5: (Ahn, Cooper, Cornuejols and Frieze [11) Assume (i) - (vii) and

s=-. Then p.

(a) ZF Z almost surely for K - B(n/f)

Z 3s~f 2 1/3

(b) Z 3B(fn almost surely,

where - .32824836 ... 1/(97) 1/3.

Lemma 6: zT Z almost surely.
C

Proof: First, we find a lower bound on ZI.

T =Max Min E.Z.(c. +v)x.. + E.(f-sv )y.Zc v.>0 i civ j

Sr.xij 1 for all j

0 S x !5 y for al i, j

yj E (0,11 for all j.

II
;-..-? -", ,-- -- .- .-. .-. 5 .. "-.-'. -- .... '.. .', ? ', - . ,,'"S ," * - ," '" " , ,"
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Setting v~ v for all jwe get, for every v >0,

(3)ZT 2! n + Z(v) where

Z(v) Min E.Z.c. .x.. + E (f-sv)y.
l ii ij 2

~.. 1 for all j
I 2i] W,

0 x.. SY.i for all i,j

*y. E: f0,11 for all j.

This is an SPLP. Let E ->0 as n -> ~.The actual value of e will be given

later. By Lemma 4(a), the K-honeycomb heuristic satisfies

(5.4) Z K -Z(v) almost surely for K and v define6 as follovs

a, K n(l+e)/s =ci(n/(f-sv))2"3 when c(n/f)2 /3  n(l-,.)/S 5

K a(n/f)2/3 and v 0 when a(n,'f)2'/3 > n(l+E)/s.

We claim that the K-honeycomb heuristic is almost surely feasible to CPLP

for this choice of K and v. To prove this, it suffices to show that there are

*almost surely at most s clients in each hexagon. The number N of clients in

an hexagon of area 1/K has the binomial distribution B(n; 1/K). By Lemma 3,

2
PrIN (1+e)n/K] e - n/3K

- .r VI, *".~ - ~ s-P ~ P,.'P~~j5** p Pp- p5. s'~~ ~ *'%
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Let E be the event that at least one hexagon of the tiling contains more than

s clients. Since K - =, the number of hexagons of the tiling that intersect

the unit square is (1+o(1))K. Thus

2
Pr[E] _< (1+o(1))Ke

-E n/3K

Let us choose E so that E2n/3K:31ogn. It is easy to check that E-O as n--.

So

Pr[E] < (1 + o(1))K/n
3 1 1/n2.

This shows that the K-honeycomb heuristic is almost surely feasible for CPLP

for the above choice of K and v. This implies

(5.5) Z < ZK + Ksv almost surely.

C,

The inequalities (5.3), (5.4), (5.5) imply I

ZT > nv +Z (1-o(I)) _> Z(1-o(1) + nv - Ksv(1-o(1) almost surely.

Since n Ks(l-o(1)) and nv < Z, we get

ZT > Z (1-o(1)) almost surely.

Since Z is a relaxation of CPLP, Z < Z. So

T
Z Z almost surely.
C
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Lemma 7:

ZI/Z -> .99810744 ... almost surely when f s3/2 /3./irn

1 3/2Z /Z .99810744 almost surely when f > s /3/7n

Z D Z almost surely.

Proof:

z min EZc ij xij + Zfy.

Y.X..:

-j1-

E.X. - sy.

=j.,0 x ij < y=j < I1] J

Consider the K/n-uniform fractional solution of Lemma 5, for

3/2K : 8(n/f) (1+E) where E -> 0.

Assuming f s3/2/3/n, we get n/K ! s(1+E).

So this solution satisfies the capacity constraints and therefore is

*. feasible to Zr, i.e. ZI < ZF.
CI 2I/3

By Lemma 5, ZF z 3B(fn2  almost surely.

Since Z I < ZI, we get

1 2 1/3Z - 36(fn ) almost surely.

The inequality f : s3 /2/3Vin implies a(n/f)3 /2 > n(l-)/s. We have shown

in Lemma 6 that, undcr this condition, the K-honeycomb heuristic is almost

, surely feasible to CPLP for K a(n/f) 2/3. By Lemma4, this implies
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Z - 3a(fn2 )1/ 3 almost surely.

Thus, when f _< s3/2 /3/n, ZI/Z - 6/a almost surely.

Since 8/ = .99810744 ..., we have shown the first part of Lemma 7.
:3/2

When f > s 12/3irn, note that we can write

Z I maxv>O min Zc .x. ij + z(f-sv)y. + nv

I I]j

z ixij sy

0 < xij :S yj < I

Now consider the K/n-uniform fractional solution for K

(n/(f-sv))2/3(1+E) where E -> 0. By Lemma 5, its value satisfies:

2 1/3
ZF - 36[(f-sv)n ] almost surely.

Therefore

ZI  maxv>03B[(f-sv)n2]1/3 + nv almost surely.

This function of v has a unique maximum, obtained when:

(5.6) n/s = B(n/(f-sv))2 /3.

This implies n/K s/(1+E) 5 s. So the above K/n-uniform fractional solution

is feasible for Z. This shows that

.
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-i 3B[(f'-sv)n 2 1 1/3 + nv almost surely

where v is defined by equation (5.6).

Similarly

Z max v>0 min Ezc.i .x. + Z(f-sv)y. +s nv

Y '2

2]/
Z~~~ .mavoa(fy. n lot uey

ByLmm/, h K~/(-hoecmbhuisifo )n(-v) 2 3 1+)ad >0
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This implies n/K : s/(1+e). By an appropriate choice of e we can show as

in Lemma 6 that the K-honeycomb heuristic is almost surely feasible. Thus
V

2 1/3Z - max I/33(f-sv)n + nv almost surely.

Therefore

Z 3c[(f-sv)n 2 ]1/3 + nv almost surely

N

where v is the value defined by equation (5.6).

L

12 1/3 2 1/3So Z /Z (3B[(f-sv)n ] /+nv)/(3a[(f-sv)n ]/+nv) 6 a/a almost surely

since B < o.

I

Finally we prove Z ZI . By (2.3), ZD  Z DC*

ZB :min Zc..x.. + Efyj
DC ij ij

(x,y) E P(DC)nP(INT).

BI
Z reduces to a linear program very similar to ZT. The only difference

is the constraint

(57)B I(5.7) E yj > n/s in ZDC instead of E yj > n/s in Z .

Consider a K/n-uniform fractional solution.
When B(n/f)2 /3 > n(1+o(1))/s, set K B(n/f) Then neither of the

constraints (5.7) is binding. So, by Lemma 5,
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Z F  ZD  almost surely.

When B(n/f)2/3 < n(1+o(1))/s, then set K = [n/s]. Note that K n/s as-

n-4-n/s -> . [

So Z - ZI - Z almost surely by the analysis made earlier to computeF D

ZI when f > s3/2/3/ n. 0
_4

Lemma 8

4.

ZBI fn/s

zBI/Z - .3333334 almost surely for f < (as) 3/2 //n. 4

Proof: The constraint zy. > n/s is feasible for ZBI. So

ZB I = E cijxij + fryj fn/s.

Now consider the following solution.

yj = 1/s for all j, xii = 1, xij = 0 for i * j. It is feasible for ZBI

and its value is f n/s. So ZBI = f n/s.

f 5 (s)3/22 1/3When f _ (cxs) 3/2/Vn, then Z - 3a(fn ) almost surely.

Z > 3(1-o(1)) (f2n)1/3 (fn2 )1 /3/s 3(1-o(1))fn/s almost surely.

This shows ZBI/Z 5 1/3+o(1) almost surely. , 5

4,

4,

"I:
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6. Conclusion

In this paper we have studied relaxations of CPLP from three different

angles: (i) inequalities among the corresponding bounds, (ii) computational

experiments and (iii) probabilistic analysis. The results in (i) can be -,

thought of as a ready reckoner to indicate the relaxation that is easiest to

solve among those that yield the same bound. We also showed that relaxations

based on the variable splitting method do not provide different bounds than

the classical Lagrangian relaxations.

In the probabilistic study, where we assume equal fixed costs and
.5'.

capacities at all facilities, we showed that the relaxations fall into three

categories according to their strength. The weak LP relaxation can be solved

analytically but the bound is indeed very weak. The strong LP relaxation "

almost surely gives a bound within one fifth of one percent of the optimum.

The relaxation proposed by Nauss falls into the same category. These

relations are relatively easy to solve. Finally, the relaxation proposed by

Van Roy is extremely tight as it almost surely provides a bound that goes to Z

as the size of the problem increases. But this relaxation is strongly NP-hard I
to compute.

The computational results complement our theoretical results. For Z and
CI

ZD we found that problems that are either loosely or tightly capacitated have

smaller duality gaps compared to those in the intermediate range. Based on

our computational results we suggest the use of a relaxation based heuristic

(H) to solve CPLP. It provides considerably better solutions that the VSM

heuristic and is also superior on computational time, at least on the large

problems. Further, it is obtained in conjunction with a lower bound.

'

I
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